Altium

ALTIUM
INTERNATIONAL

Nanolive Webinar on Phototoxicity

Nanolive Webinar on Phototoxicity

The webinar on Phototoxicity will focus on presenting a recent study realized in collaboration with Ecole Polytechnique Féderale de Lausanne (EPFL). The research compares standard epifluorescence microscopy with the Nanolive label-free tomographic phase imaging technique and discusses the perturbations induced by phototoxicity on living samples during experimentation.
In particular, the following topics will be covered:

Overcoming Phototoxicity - The Nanolive Imaging Advantage

In vitro live cell imaging has become a promising tool to study dynamic cell behaviors, such as division and differentiation, cell death, cell-cell interaction (e.g. immune cells), or cell response to treatments over extended periods of time. However, few technologies have been developed with phototoxicity in mind. Today, most live imaging techniques rely on either high illumination regimes or fluorescent labelling, both inducing phototoxicity and compromising the ability to keep cells unperturbed and alive over time. Since our knowledge of biology is driven by observation, it is key to minimize the perturbations induced by the imaging technique.
Surprisingly, very few studies have highlighted or discussed the artifacts arising from phototoxicity during live cell imaging. This page focuses on the Master Project of Hugo Marc Moreno, which compares standard epifluorescence microscopy with Nanolive imaging (also known as holo-tomographic phase microscopy). Herein, Moreno et al discuss the perturbations induced by phototoxicity on living samples during experimentation.
Nanolive Imaging gets rid of invasive fluorescent markers, while using a low energy exposure light source. Nanolive’s label-free imaging modality makes it well suited to observe living samples, when compared to epifluorescence imaging. Moreno’s et al results raised the question of how much of our knowledge, particularly about mitochondria, may have been biased by artifacts induced by fluorescence imaging.
Nanolive microscopy alone did not induce any detectable effect on mouse pre-adipocytes after one-hour acquisition at a frequency of 1 image every 6 seconds. The overall spreading and motility of the cell remained apparently uncompromised: cell shape did not drastically change nor shrink over the imaging period, the ability of filopodia to spread and adhere looked unaffected and main adhesion sites were not impaired. Shape and density of nucleoli (bright granules in the nucleus) did not provide any sign of perturbation neither. Moreover, mitochondrial network did not show any change in phenotype: no extended fusion nor fission was observed, the overall dynamic of the mitochondria remained constant during the full hour of acquisition, and the shape of mitochondria was conserved, no swelling of mitochondria was seen.
Imaging regimen: 1-hour acquisition at a frequency of 1 image every 6 seconds
VS
Cells are affected very rapidly:
MitoNIR signal was concentrated in the nuclear periphery at later timepoints.
If you are interested in learning more, look into Moreno’s et al. Master thesis here.

The Latest in Nanolive Imaging: CX-A

The CX-A redefines the limits of live cell imaging in 96 well plates for continuous organelle monitoring in cell populations.
Play Video

Complete Solution for 3D Live Cell Exploration

The CX-A is designed to work with 96 well plates to multiply and parallelize experimental conditions, hence, bringing undoubtable significance to each experiment and delivering solid biological insights to researchers (1).

Furthermore, the system is equipped with multiple imaging modalities to correlate and compare physical and chemical information at each time-point (2).
Finally, 3D data sets of every single image at every single time-point are automatically acquired in real-time (3).
A fully integrated solution adapted to the most advanced professional needs. Click here for a full overview of applications.

Observe Living Cells - From Populations to Organelles

New intuitive user-interface for automated long-term experiments on 96 well plates at physiological conditions.

Technical Features

Socially Distanced Demonstrations

Socially Distanced Demonstrations

The Nexus Team wishes you a happy and healthy Fall. As a Life Science Service business, Nexus continues to provide distribution of innovative products in the United States. Here are the latest updates from us, including:

New! Socially Distanced Demonstrations

During these fast changing times, Nexus is striving to provide the best support to current and future clients. From virtual to onsite (small group) demonstrations, we offer a wide variety of support for our customers. If you are interested in live demonstrations from the Nanolive or PHI AB product lines, please complete the short survey.

Here's How it Works:

A New Approach to Measuring Organoids and Spheroids

The W8: A Physical Cytometer for 3D Samples

Nexus is asking all organoid and spheroid experts for their take on a new system in development, the W8 by CellDynamics. The system gathers precise information about size, weight, and mass density on 3D cultures from single cell suspensions to spheroids. Please contact us with any feedback or questions.

Complete Solution for 3D Live Cell Exploration

Nanolive Imaging combines automatic 3D refractive index analysis with a fully integrated 3-channel epifluorescence module to image live cells as long as you want, providing label-free imaging for new biological insights. Nanolive’s latest product, the CX-A, automates this imaging across a 96-well plate layout for statistically relevant, high-resolution data.

Label-Free Imaging Without Leaving the Incubator

Phase Holographic Imaging's HoloMonitor M4

Nexus Scientific has recently partnered with Phase Holographic Imaging (PHI), developers of the Holomonitor. Designed to fit inside standard incubators, the Holomonitor is able to non-invasively explore of the kinetics of cellular responses on a population level. The label-free imaging system is based on the principle of quantitative phase imaging, enabling non-invasive visualization and quantification of living cells without compromising cell integrity.

We at Nexus are currently offering virtual presentations and webinars for both systems, as well as organizing socially distanced demos for the future. Contact us for more information.

Phase Holographic Imaging October Newsletter

Phase Holographic Imaging October Newsletter

The Latest From Nexus Scientific

The Nexus Team wishes you a healthy and productive start to the Fall season. As a Life Science Service business, Nexus continues to provide distribution of innovative products in the United States.

Phase Holographic Imaging's HoloMonitor M4

Nexus Scientific has recently partnered with Phase Holographic Imaging (PHI), developers of the Holomonitor. Designed to fit inside standard incubators, the Holomonitor is able to non-invasively explore of the kinetics of cellular responses on a population level. The label-free imaging system is based on the principle of quantitative phase imaging, enabling non-invasive visualization and quantification of live cells without compromising cell integrity.

Join us for a Webinar on Truly Controlled Cell Experiments for Cancer Research

Phase Holographic Imaging (PHI), in collaboration with Scientific Bioprocessing and BioSpherix, is hosting the first of a three-part webinar series dedicated to enhancing the translatability of in-vitro findings. All three technologies are designed to limit artifacts, increase reproducibility, and provide quality control to ensure that experiments are conducted in an environment that it as close as possible to the true physiology. The first webinar is aimed at cancer research and will be held on October 14th at 11am EST. Click here to register and learn more.

The Speakers

Phase Holographic Imaging (PHI)

Provides a non-invasive tool that lets you continuously image and quantitatively analyze both single and populations of cells directly inside your incubator without any labels or stains.

Scientific Bioprocessing

SBI’s real-time pH and dissolved oxygen sensors monitor pericellular conditions with tiny sensors as small as 3 mm in diameter. Sensor feedback can be used to control agitation so that cultures can reach desired dissolved oxygen levels with the ID·Rocker instrument.

BioSpherix, Ltd.

Designs and builds Cytocentric equipment for academic research, pharmaceutical, and biotechnology laboratories around the world. Our equipment uniquely supports the needs of cells for constant physiologic conditions, increasing reproducibility for cell-based sciences and therapies.

Automated Gap Closure Analysis for Wound Healing

PHI provides a number of different automated analyses for applications such as wound healing (below), cell viability, cell proliferation, cell tracking, drug response, and more! We at Nexus are currently offering virtual presentations and webinars of the system, as well as organizing demos for the future. Contact us for more